Monatshefte für Chemie 111, 517-527 (1980)

Monatshefte für Chemie

© by Springer-Verlag 1980

The Crystal Structure of $LaIr_4B_4$, $ThOs_4B_4$, $ThIr_4B_4$ (NdCo₄B₄-Type) and URu₄B₄, UOs_4B_4 (LuRu₄B₄-Type)*

Peter Rogl

Institut für Pysikalische Chemie, Universität Wien, A-1090 Wien, Austria

(Received 8 January 1979. Accepted 22 January 1979)

The crystal structure of LaIr₄B₄ has been refined from single crystal counter data. LaIr₄B₄ is tetragonal, $P4_2/n$, Z = 2, isotypic with NdCo₄B₄, $\sum |\Delta F|/\sum |F_0| = 0.039$ for 312 independent reflections $[|F_0| > 2 \sigma (F_0)]$. ThIr₄B₄ and ThOs₄B₄ also belong to the NdCo₄B₄-type structure. URu₄B₄ and UOs₄B₄ were found to crystallize with LuRu₄B₄-type structure. The crystal chemistry of $(RE)T_4B_4$ -phases is discussed and simple geometric relations are shown to exist between them.

(Keywords: Crystal structure; Rare earth—noble metals—boron; Ternary metal borides)

Die Kristallstruktur von LaIr₄B₄, ThOs₄B₄, ThIr₄B₄ (NdCo₄B₄-Typ) und URu₄B₄, UOs₄B₄ (LuRu₄B₄-Typ)

Die Kristallstruktur von LaIr₄B₄ wurde an einem Einkristall bestimmt: tetragonal, $P 4_2/n$, Z = 2, isotyp mit NdCo₄B₄, $\sum |\Delta F|/\sum |F_o| = 0,039$ für 312 unabhängige Reflexe $[|F_o| > 2 \sigma (F_o)]$. ThIr₄B₄ und UOs₄B₄ gehören ebenfalls dem NdCo₄B₄-Typ an. URu₄B₄ und UOs₄B₄ kristallisieren im LuRu₄B₄-Typ. Die Kristallehemie der $(RE)T_4B_4$ -Phasen wird diskutiert und einfache geometrische Beziehungen werden zwischen ihnen aufgezeigt.

Introduction

In a recent study of RE (Rare Earth)—{Os,Ir}—B systems¹, two series of isotypic compounds have been observed: {La,Ce,Pr,Nd,Sm}Os₄B₄ and {Y,La,Ce,Pr,Nd,Sm,Gd,Tb}Ir₄B₄. All compounds were found to crystallize with the NdCo₄B₄-type structure, whereas for combinations of smaller RE atoms (Y,Gd,Tb,Dy,Er,Ho,Tm,Yb) with osmium and boron a new structure

^{*} Dedicated to Prof. B. T. Matthias in celebration of his 60th birthday.

P. Rogl:

type was observed, closely related to $NdCo_4B_4$ but corresponding to an approximate formula $(RE)_{\sim 1.25}Os_4B_4$ (Ref.²).

However, only little information could be found from literature about actinide (Th,U)—noble metal—boron systems.

A CeCo₄B₄-type structure was reported by *Vandenberg* et. al.³ for ThRh₄B₄ while ThRu₄B₄ has been found to crystallize with the recently described crystal structure of LuRu₄B₄ (Ref.⁴).

In view of a better understanding of the various decisive influences of size, electrochemical, and energy band factors among $(RE)M_4B_4$ -type structures, a study of the alloying behaviour of Th and U in combinations with noble metals and boron was carried out and is the subject of the present work.

Furthermore, single crystal counter data of $LaIr_4B_4$ have been analyzed in terms of precise atomic parameters, exact boron coordination, as well as boron—boron aggregation.

Arc melted alloys La—Ir—B confirmed the existence of LaIr₄B₄ (see Ref.¹), samples however were poorly crystallized. To obtain single crystals, pellets of La(9)Ir(45)B(46) were heated at 1,600 °C for 10 minutes (well above melting) in a recrystallized alumina crucible sealed in a tantalum container. The mixture was then slowly cooled to 1,100 °C over a period of 20 minutes and finally radiation (argon) quenched. The crystal growth procedure was carried out in a purified argon atmosphere at a pressure of 1.1×10^5 Pa.

A small crystal suitable for structure determination was obtained by mechanical fragmentation of the melted button.

Table 1.	Crystallographic data for LaIr_4B_4 , ThOs_4B_4 and ThIr_4B_4 . Space group $P 4_2/n \ (C_{4h}^4; \text{ No. 86}), \ Z = 2, \ \text{NdCo}_4\text{B}_4$ -type
	$P 4_2/n \ (C_{4h}^4; \text{ No. 86}), \ Z = 2, \ \text{NdCo}_4 B_4$ -type

$LaIr_4B_4$	$\mathrm{Th}\mathrm{Ir}_4\mathrm{B}_4$	$\mathrm{ThOs}_4\mathrm{B}_4$			
a = 0.76719 (4) nm c = 0.39739 (2) nm c/a = 0.518 $D_x = 13.50 \text{ kg/dm}^3$ $\mu (\text{Mo}K\alpha) = 1,176 \text{ cm}^{-1}$	a = 0.7668 (2) c = 0.3972 (1) c/a = 0.518 $D_x = 14.84$	$egin{array}{rcl} a&=&0.7579(2)\ c&=&0.3999(1)\ c/a&=&0.528\ D_x&=&14.98 \end{array}$			

Weißenberg photographs of the crystal fragment ($\sim 30 \times 30 \times 50 \,\mu\text{m}$; axis [001]) proved the crystal to be tetragonal with Laue-symmetry 4/m. The extinctions (hkl) with $h + k \neq 2n$ and (00l) with $l \neq 2n^*$ indicate $P4_2/n$ (No. 86) as the only possible space group. Lattice parameters and intensities were measured with graphite monochromated Mo- $K\alpha$ radiation on a PW-1100 computer controlled four circle diffractometer (Austrian Natural Science Research Council, Institute of Mineralogy, Technical University Vienna). Cell

518

^{*} From automatic diffractometer intensity recordings.

parameters were determined from least squares refinement of 2θ -values of ~ 30 reflections using the program PARAM (X-ray system⁵). The crystallographic data are given in Tab. 1.

A total number of 758 reflections were recorded to a limit of $\sin \theta/\lambda = 0.066 \text{ nm}^{-1}$. A set of 312 symmetry independent intensities was obtained by averaging ("centered reflections" only). All observed intensities were used in the structure determination. An absorption correction was applied for an idealized spherical crystal ($\mu R = 2.0$; Ref.⁶).

Refinement of the Crystal Structure of LaIr₄B₄

Two formula units of $LaIr_4B_4$ were calculated from a comparison of the atomic volumes with the volume of the unit cell (assuming a space filling of 70%). Lattice parameters, composition and crystal symmetry confirm structural identity with the crystal structure of NdCo₄B₄ (Ref.⁷). Thus, with 2 La in 2b) and 8 Ir in 8g) the crystal structure refines satisfactorily with the full matrix least squares program CRYLSQ (X-ray system⁵). Hartree-Fock scattering factors⁸ were used for La, Ir and B and anomalous dispersion correction⁹ was considered for La and Ir. Unit weights were attributed to all observed reflections (there is no significant influence of different weighing schemes on the obtained *R*-value).

A difference Fourier map $(F_{o}-F_{\text{La,Ir}}, R = 0.056)$ clearly resolved 8 B-atoms in 8 g). Refinement of the occupancy of the La—as well as Irpositions resulted in a merely insignificant change [occ(La) = 0.999, occ(Ir) = 1.001] with respect to full occupation of these atomic sites (*R* remained constant). The final *R*-value $R = \sum |\Delta F| / \sum |F_o|$ calculated with isotropic extinction and anisotropic thermal parameters was 0.039 for 312 observed reflections $(|F_o| > 2\sigma)$. At this point a difference Fourier map was featureless. The final positional parameters and thermal factors are given in Table 2; the comparison of $|F_o|$ and $|F_c|$ in Table 3 and the atomic distances calculated up to a limit of 0.4 nm are shown in Table 4.

Isotypic ThOs₄ B_4 and ThIr₄ B_4 (NdCo₄ B_4 -Type)

Powder patterns of these new compounds were indexed completely on the basis of a primitive tetragonal cell (Table 1). Within the limits of error no changes of the lattice parameters were observed from multiphase alloys indicating a very narrow homogeneous range for ThOs₄B₄ and ThIr₄B₄ respectively. X-ray inspection of the powder diagrams revealed the same characteristic intensity differences as earlier encountered between the osmium and the iridium series of $(RE)T_4B_4$ compounds (see also Ref.¹). These differences clearly explain from slightly different atomic parameters as well as from a small change

are		11
ctors]	U_{23}	0.0
$kl) \times 10^{-2}$	U_{13}	0 - 0.04
$U_{23}b^{*}c^{*}$	U_{12}	- 0 0.03
	U_{33}	1.56(12) 1.09(5)
	U_{22}	$U_{11} \\ 0.70(4)$
i	$U \left[10^{-2} (\mathrm{nm})^2 \right]$	$\begin{array}{c} 0.89(7)\\ 0.89(4)\\ U_{\rm iso}=1.7(5) \end{array}$
	00.0	$1.00 \\ $
	N	$\begin{array}{c} 3/4 \\ 0.1441 \left(2 ight) \\ 0.142 \left(6 ight) \end{array}$
	y	$\begin{array}{c} 1/4 \\ 0.1397 \left(1 \right) \\ 0.405 \left(4 \right) \end{array}$
	x	$\begin{array}{c} 1/4 \\ 0.5937 \left(1 \right) \\ 0.529 \left(2 \right) \end{array}$
	Site	$egin{smallmatrix} 2(b) \ 8(g) \ 8(g) \end{pmatrix}$
		La B

P. Rogl:

Crystal Structure

Table 3. Observed and calculated structure factors for LaIr_4B_4 . Reading from left to right, the columns contain the value $h, k, l, |F_0|$, and $|F_c|$; L indicates unobserved reflections (less than 2σ)

h k 🖁	F.	F	h	k	1 F		h k ž	Fol	٢	h k ĝ	Fo	Fc	h k 2	Fol	Fel
0 2 0	25.19	24.79	1	10	1 116.	73 108.87	10 1 1	148.49	150.90	722	167,24	176.42 90 B4	653	47.82 67.88	48.79
0 6 0	123.75	126.88	ž	ż	1 207.	84 208.57	002	161 01	164 41	742	37.23	39.09	713	107.57	111.04
0 8 0	146,88	149.81	2	3	1 171.	60 164.B7	012	230,17	230,10	752	27.55	26.34	723L	5.74	6.78
0 10 0	30.02	26.83	2	4	1 108.	14 102.68	022	59.84	58.37	762	52.07	53,74	733	56.03	56,72
1 1 0	124.83	118.64	2	2	1 167.	92 158,80	032	232,89	241.24	812	95.27	101.26	743	98.54	105.15
1 30	313.2/	194 27	2	,	1 120.	17 12 92	042	14,80	12.05	822	19,88	100.50	/ 5 3	14/,45	148.92
1 7 0	232.63	224.53	Ż	ŝ	1 56.	59 52.57	062	65.79	56.45	847	26.57	28.28	8231	7.31	6.78
i śöi	8.96	5.46	2	9	i 111.	33 104.01	072	123.17	127.91	852	109.42	118.44	833	33,89	30,64
2 2 0	59.46	59.13	2	10	1 23.	45 21.36	082	63.05	63.13	912	46,45	48.27	004	192.93	197.28
2 4 0	92.02	89.74	ż	1	1 163.	82 168.44	092	23,35	24.23	922	113.43	119.14	014	87.89	85.52
2 6 0	179.41	214 20	3	- 5	1 44	37 45 16	122	31,15	29.58	932	77 07	72 87	024	07.65	01 04
2 10 0	130 84	120 60	ž	Ă,	i 217.	24 211.35	132	135 04	135.03	023	93.68	90.32	044	200.66	204.57
3 1 0	171.81	170.27	3	5	1 207.	77 196.62	142	256.02	264.27	033	84.42	64.14	054	41.86	38.94
3 30	130.14	131.86	3	6	1 220.	98 213.53	152	83.98	84.47	043	41.31	39.87	064	15.83	6.28
350	54.37	52.37	3	7	1 L 8.	34 6.55	162	119.26	123.66	053	26.90	23.42	074	47.57	44.69
3 7 0	31.13	28.79	3	ä	1 119.	56 109.78	1/2	21.02	19.39	0 5 3	163,41	7 40	124	26 20	27 30
3 90	261 11	262.33	Ă	í	1 55	72 53.56	192	31 77	28.48	081	79.76	77.25	111	142.65	141.89
4 4 0	251,23	252.02	4	2	1 22.	89 23.82	2 1 2 L	4.84	1.67	113	160.78	152.39	144	103.87	102.33
4 6 0	127.65	127.30	4	3	1 68.	60 70.33	222	61.54	61.41	123	121.13	118.08	154	46.25	45.14
4 8 0	51.37	48.77	4	4	1 58.	39 60.47	232	99.20	100.00	133	59.32	56.56	164	44.31	45.12
5 1 0	55,48	203 72	1	ŝ	1 //.	15 /6.19	242	27.42	25.8/	143	43.80	42,30	224	60.33	56.25
5 3 0	104 95	110.32	2	,	1 82	18 73.73	262	77.40	77.44	163	46.92	42.77	234	34.54	33.38
5 7 0	268.22	262.78	4	8	1 113.	03 104,53	272	199.73	195.49	173L	8.54	4.15	244	118.00	118.39
5 9 0	47.77	47.26	4	9	1 183.	98 179.07	282	84.16	78.38	183	20.09	18.67	254 L	9.13	14.42
620	51.98	51.87	5	1	1 164.	92 169.15	292L	11.51	5.32	213	72.47	69.53	264	39,84	39.29
6 4 0	87.26	90.91	2	4	1 1/4.	72 10 71	312	81.14	113 26	223	14 50	230,09	3 1 4	22.35	14.34
6 6 0	90.70	2 93	5	4	1 42	17 41.61	332	20.92	17.93	243	112.26	114.26	334	138.07	140.47
7 1 0	125.14	130.76	5	5	1 59.	64 62,77	342	99,72	95.95	253	129.03	132.50	344	31.01	31.92
7 30	201.41	209.20	5	6	1 25.	17 23.88	352	54.39	50.58	263	130.21	136.74	354	37.11	39.09
7 5 0	L 5.52	10.54	5	7	1 L 9.	68 2,32	362L	11.70	10.95	273	47.76	46.13	364L	6.01	3.90
7 70	18./1	206 42	2	1	1 104	3/ 22,29	3/2	92.34	26 64	203	170.90	185 21	4140	100 64	97 51
8 4 0	1 8.45	7.38	6	2	1 114.	60 118.77	392	40.57	39.39	323	139.12	138.51	434	106.58	103.77
8 6 0	210.34	221.25	6	3	1 102.	47 106.08	412	52.32	52.97	333	50.51	47.72	444	99.57	94.54
910	. 95,13	97.87	6	4	1 145,	66 153.90	422	105.69	110.82	343	26.77	23.30	454L	10.31	5.44
9 3 0	154.87	162.90	6	5	1 213,	93 223.98	432	255.60	265.70	353	228.52	224,25	514	41.18	67 53
9 50	68.04	93.94	2	2	1 . 20	30 25 95	1.51	99.30	9.67	173	17.45	9.12	534	178.78	180.84
0 11	45.94	44.92	6	8	1 94	84 87.55	462L	8.07	7.12	383	103.52	95.07	544	56.09	49.06
0 2 1	89.30	87.66	2	ĩ	1 92.	26 96.71	472	171.44	160.20	413	53,23	54.81	614L	13.51	2.35
0 3 1	12.49	9.22	2	2	1 114.	07 119.68	482	22.54	18.81	423	26.89	24.39	624	34.63	35.35
0 4 1	36.49	37.20	2	3	1 45.	27 47.61	512	53,18	54.20	4 3 3	45.50	60 10	0341	67.25	9.0/ 54.94
0 5 1	207.1	143 26	4	- 2	1 119.	85 124.05	2 2 2	14 69	9 37	463	99 71	93 95	0251	30.64	11.02
0 7 1	123.3	124.35	5	6	î L 17	07 6.06	542	138.39	143.25	463	89.36	81.60	0 3.5	80.90	76.98
0 8 1	65.3	64,30	7	7	1 75.	09 75.17	552	60.89	59.75	473	28.25	24.46	045L	0.00	4.29
0 9 1	133.4	7 131.94	8	1	1 91.	07 96.22	562	202.97	196.68	513	187.86	191.46	115	23.68	19.13
0 10 1	121.0	B 113.48	8	2	iι ο.	00 5.60	572	100,56	91.07	523	14 77	13 12	125	13.06	7 77
1 2 1	92 6	5 92,87	B	Å	1 .24	31 24 85	582	14.26	4.81	543	80.25	78.35	215	149.18	149,12
i 5 î	56.1	8 54,45	6	5	1 73.	12 78.86	622	49.19	47.32	553	76.25	73.04	225	39.66	34.07
141	88.3	5 87.46	8	6	IL 4.	24 3.21	632	34.90	33.03	563	53.26	45.38	235	32.90	33.61
1 5 1	22.9	z 21,22	9	1	1 106.	52 110.04	642	51.97	52.69	573L	8,56	2.57	315	23,96	25.76
1 6 1	57.7	8 34,50	2	2	1 16.	53 13.98	6621	36.12	10.77	523	130.75	134.82	323	135.24	100.00
1 61	BR.5	4 85.69	š	Ĩ.	1 136	87 142.12	672	133.26	125.22	633	20.21	19.71			
1 9 1	69.4	9 67.24	é	5	1 45.	20 49,27	712	61.70	63.71	643	170.51	179.30			
			-	-											

Table 4. Interatomic distances (≤ 0.4 nm) in LaIr₄B₄. The estimated standard deviations are less than 0.2 pm

La-2 La 0.3974	Ir—1 La 0.3249	B-1 La 0.2910
-4 Ir 0.3249	—-1 La 0.3181	-1 Ir 0.2171
-4 Ir 0.3181	-4 Ir 0.2874	1 Ir 0.2152
-4 B 0.2910	—1 Ir 0.2936	1 Ir 0.2118
	—1 Ir 0.2824	-1 Ir 0.2103
	-1B 0.2118	1 B 0.1858
	-1 B 0.2152	
	-1B 0.2171	
	—1 B 0.2103	

in c/a [$(c/a_{(RE)Os_4B_4} \approx 0.53; c/a_{(RE)Ir_4B_4} \approx 0.52$]. Thus using the atomic parameters earlier derived for LaOs_4B_4 from *Weißenberg* and powder photographs ($x_{Os} = 0.605, y_{Os} = 0.140, z_{Os} = 0.140$; Ref.¹) and LaIr_4B_4 (Table 2), observed and calculated intensities are in excellent agreement for both the thorium-compounds^{*}. Intensity calculations can be obtained on request.

Table 5. Crystallographic data for URu₄B₄ and UOs₄B₄. Space group I $4_1/acd$ $(D_{4h}^{20}, No. 142), Z = 8, LuRu_4B_4$ -type

URu ₄ B ₄	UOs_4B_4
a = 0.7459 (2) nm	a = 0.7512 (2)
c = 1.4986 (3) nm	c = 1.5053 (4)
c/a = 2.009	c/a = 2.004

URu_4B_4 and UOs_4B_4 with $LuRu_4B_4$ -Type Structure

X-ray analysis of the powder diagrams of the new compounds revealed striking similarity with the powder pattern of ThRu₄B₄ (LuRu₄B₄-type, Ref.⁴). In both cases indexing was complete on the basis of a body centered tetragonal cell (Table 5); a very narrow homogeneity region (1,400 °C) was derived from lattice parameter variation in multiphase alloys, thus confirming a formula U{Ru,Os}₄B₄. Lattice parameters, c/a-ratio, intensities as well as crystal symmetry prove structural identity with the crystal structure of LuRu₄B₄ (Ref.⁴). Using the Ru-parameter as derived by Johnston⁴, observed and calculated powder intensities compare very well. Boron parameters however were recalculated. For the new derived parameters (see Table 6) boron—boron contacts of 0.176 nm are formed in good accordance with usual boron pair formation (0.175-0.182 nm). Ru—B distances range between 0.215-0.229 nm; U—B distances (0.294-0.317 nm) exceed the radii sum by more than 10% (weak or no interaction).

Discussion

In $NdCo_4B_4$ type phases, tetrahedral VIII-A metal clusters and RE atoms form a distorted NaCl-type array boron atoms accomodated within the voids of the metal framework (Fig. 1). Boron-boron

^{*} Meanwhile the crystal structure of $LaRu_4B_4$ (NdCo₄B₄) has been published by *Grüttner* and *Yvon*¹³ with practically identical parameters as the ones obtained in Ref.¹.

Table 6. Powder diffraction data for URu₄B₄ (LuRu₄B₄-type). Material: Alloy U11Ru44B45, arc melted, 1,400 °C, 12 h. Method: Powder X-ray diffraction in a Siemens Diffractometer, Ni-filtered $CuK\alpha$ -radiation, Si-standard. $I = mF^2 (1 + \cos^2 2\theta) / \sin^2 \theta \cdot \cos \theta$ is normalized to the strongest reflection having intensity 100. Space Group: $I4_1/acd$ (D_{4h}^{20} ; No. 142, origin at 1)

8 U in 8b) 0, 1/4, 1/8

 $32 \operatorname{Ru} \operatorname{in} 32 \operatorname{g}$ 32 B

x, y, z

in 32g) x, y, z

(x = 0.112, y = 0.100, z = 0.9375)(x = 0.826, y = 0.101, z = 0.955)

	104	.sin ² 0	Inte	ensity	10 ⁴ .sin ² 0			Int	ensity
(hk 2)	obs.	calc.	obs.	caic.	(hk 1)	obs	. calc.	obs.	calc.
112	319	318	10	14.2	208	2111	2111		(9.6
004	420	421	22	{13.9	404)	21.24	2123	27	7.7
200	425	425	55	l21.2	420)	2127	2127	21	10.0
202	532	531	3	3,8	422	*	2232	*	0.7
211	557	558	2,5	3,3	415	×	2466	×	0.2
213	768	769	38	41.3	228	2536	2536	17	(6.4
204	847	847	37	∫29.6	424	2548	2548	17	10.3
220	850	851	57	l11.8	406	×	2650	*	0.0
116	1164	1161	150	{ 45.9	219	×	2665	*	0.3
312	1169	1169	100	100.0	327	2673	2673	4	(3.3
215	1190	1190	26	25.3	431	2687	2685	0	12.0
224	1270	1272	18	15.4	318	×	2749	×	0.0
206	1377	1374	1.5	1.3	11.10	2845	2846		(10.6
321	1408	1409	11	9.4	336	2864	2862	41	{ 12.8
314	1486	1485	4.5	3.3	512	2869	2870		15.6
323	1620	1620	6	6.0	433	*	2896	*	0.0
800	1685	1686	2.5	1.7	20.10	*	3059	*	0.3
400	1700	1702	3	1.9	426	*	3075	*	0.5
217	1821	1822	2	1.2	417	3100	3098	2	1.4
411	1833	1834	4	2.8	521	*	3111	×	0.0
316)	2014	2012	3	∫1.5	514	3185	3187	2.5	1.5
332)	2014	2020	5	lo.9	435	×	3317	*	0.0
325)	2040	2041	6	(3.8	523	3321	3321	6	5.0
413)		2045	v	0.2	408	3388	3387	33	(21.9
					440	3403	3403	55	Ì 9.2

* not observed

distances in LaIr₄ B_4 [0.185 (2) nm] are rather large compared to typical boron pair formation (0.176-0.182 nm). A similar result was earlier¹ obtained from $NdIr_{4}B_{4}$ -powder diffraction data (0.182 nm). Despite the higher error figures (< 2 pm) for atomic distances of such low electron atoms derived from X-ray analysis, a calculation of the B-B distances (using the well established atomic parameters derived for $LaIr_4B_4$ and LaOs₄B₄ respectively) yielded values of ≥ 0.182 nm for all Ir and Os compounds with $NdCo_4B_4$ type¹. On the other hand a strong VIII-A metal—boron interaction seems to be characteristic: B-T distances on average are shorter by $\sim 5\%$ than the sum of the metal radii. $(R_{\rm B} = 0.088, R_{\rm Ir} = 0.136, R_{\rm Os} = 0.135 \,\mathrm{nm}).$ Similarly short Co-B P. Rogl:

distances were also observed from NdCo₄B₄ but the smaller radius ratio $R_{\rm Co}/R_{\rm B}$ still enables short boron—boron contacts (~ 0.174 nm, see Ref.⁷). Boron coordination can be described as a very distorted triangular metal prism La (2) Ir (4). But with two rather large La—Ir distances (0.3669 nm) this coordination figure has to be regarded as a more "open" polyhedron inasfar as for each trigonal prisma corner atom is supposed to have at least three neighbouring corner atoms within bonding distance. A similar distorted, triangular prismatic metal

Fig. 1. Comparison of the crystal structures of $CeCo_4B_4$ and $NdCo_4B_4$ as seen in projection along [001]. For description of $CeCo_4B_4$ see Fig. 2. Similar principles are retained for description of $NdCo_4B_4$. Size of osmium atoms depending on hight: thin lined figures: z = 0.144, 0.644; heavy lined figures: 0.356 and 0.856. Boron atoms in 0.144 and black circles in z = 0.641. Boron coordination figures (very distorted trigonal prisms) are shown; distances, that considerably exceed the sum of radii are indicated by dashed lines

coordination figure RE_2T_{4+1} with two rather remote RE atoms, but one additional T-atom is already known from $CeCo_4B_4$ - as well as $LuRu_4B_4$ type structures^{3, 4}. At present little is known about the factors stabilizing a $(RE)T_4B_4$ —compound in one of the mentioned structure types $(CeCo_4B_4, LuRu_4B_4 \text{ and } NdCo_4B_4)$. Furthermore a new structure type was reported for "CeRe₄B₄" by $Kuz'ma^{10}$. Isotypic compounds were observed for {Y,La}—Re—B (Ref.¹⁰) but a complete characterization of its crystal structures is still lacking. As far as the size factor is concerned, the NdCo₄B₄-type structure is favoured for high ratios R_{RE}/R_T . The iridium and osmium series are found to be restricted to Tb and Gd respectively as the RE-member with the smallest radius to form a NdCo₄B₄-type structure.

(Fig. 1b). Ce and Ru atoms form tetrahedra; thin heavy lined figures are generally displaced by hight of 1/2 perpendicular to plane of projection. Largest circles are RE atoms in 0 and 1/2, smallest circles are boron atoms (z = 0.153: thin circles, z = 0.403; 0.653medium, black circles z = 0.847). Size of Co, Ru atoms depends on hight in projection (--0.137, 0.137, 0.363, 0.637; parameters for Fig. 2*a,b,c.* Projection of the crystal structures of CeCo₄B₄ (YRh₄B₄) along [001] (Fig. 2*a* and 2*c*), and of LuRu₄B₄ along [100] Rh in YRh_4B_4

From the alloy chemistry of binary and ternary actinide—borides a thorium radius is observed comparable to one of the largest RE atoms. Thus it is not surprising that $\text{Th}\text{Ir}_4\text{B}_4$ and $\text{Th}\text{Os}_4\text{B}_4$ crystallize with NdCo₄B₄-type structure. For comparison of lattice parameters and volume see Ref.¹. Uranium on the other hand is a much smaller atom (to be grouped among smallest RE members) and thus from size factor it seems understandable that no $NdCo_4B_4$ -type $U(Os, Ir)_4B_4$ compounds are formed. However differences in the electronic structure of almost equally sized noble metal atoms ($R_{\rm Ru} \approx R_{\rm Rh} = 0.134$, $R_{\rm Os} = 0.135$, $R_{\rm Ir} = 0.136 \,\rm nm$) are strong enough to confine the decisive influence of the size factor within each isotypic series of compounds. URu₄B₄ and UOs₄B₄ are isotypic with the crystal structure of LuRu₄B₄ which seems to be favoured for the smaller Rare-Earths. A simple relationship between the crystal structures of $CeCo_4B_4$ and $LuRu_4B_4$ is obvious from Fig. 2. Thus the atomic arrangement of $LuRu_4B_4$ can be constructed by alternating slabs of $CeCo_4B_4$ - and its mirrored counterpart (see Fig.2) along [001] of LuRu₄B₄. This close relationship finds its expression in the lattice parameters: $[a(\text{LuRu}_4\text{B}_4\text{-type}) \approx \sqrt{2}$. $a(\text{CeCo}_4\text{B}_4);$ $c(\text{LuRu}_4\text{B}_4) \approx 2\sqrt{2}$. $\alpha(\text{CeCo}_4\text{B}_4)$]. For the pair NdCo₄B₄-type and CeCo₄B₄-type (see Fig. 1) a similar relationship of the lattice parameters exists: $a(NdCo_4B_4) \approx \sqrt{2}$. $a(CeCo_4B_4)$; $c(NdCo_4B_4) \approx \frac{c}{2}(CeCo_4B_4)$ —

however the packing of tetrahedra differs. The rather rigid * three dimensionally linked VIII-metal framework in NdCo₄B₄-type phases (octogonal tubes with infinite linear chains of *RE*-atoms) depending on the ratio R_{RE}/R_T seems to be restricted to larger *RE* atoms. Thus for smaller *RE*-atoms the structure has to be adapted toward a higher *RE*/VIII metal ratio in order to maintain bonding within the *RE*chains. This principle indeed seems to be maintained within the newly found series of *RE*—Os—B compounds (smaller *RE*-atoms Tb \rightarrow Yb) which might be seen as an example of the so-called "infinite adaptable structures" of which only a few groups have been observed so far^{11,12}.

This research was sponsored by the Austrian Science Foundation (Österr. Forschungsrat) under grant 3620.

Acknowledgements

The author wants to express his gratitude to Professor Dr. H. Nowotny for his continuous interest in this work.

Single crystal intensity data collection was carried out on the PW-1100 four

^{*} A measure for the rigidity of the *T*-metal sublattice is found from the slope $\Delta L/\Delta R$ of the linear correlation between lattice parameters (*L*) and radius R_{RE}^{3+} (see also Ref.¹).

circle diffractometer (Austrian Natural Science Research Council, Proj. Nr. 2178) of the Mineralogical Institute of the Technical University in Vienna. We gratefully acknowledge permission of Prof. Dr. H. Preisinger and kindly thank Dr. H. Völlenkle for technical assistance.

The author's thanks are also due to Dr. *Endter*, Degussa, Hanau for kindly supplying us the noble metals.

References

- ¹ P. Rogl, Mh. Chem. 110, 235 (1979).
- ² P. Rogl, to be published.
- ³ J. M. Vandenberg and B. T. Matthias, Proc. Natl. Acad. Sci. U.S.A. **74 (4)**, 1336 (1977).
- ⁴ D. C. Johnston, S. State Commun. 24, 699 (1977).
- ⁵ X-ray System, Technical Report TR-192, Computer Science Center, University of Maryland, U.S.A. (1972).
- ⁶ International Tables for X-ray Crystallography, Vol. III, 2nd ed. Birmingham: Kynoch Press. 1968.
- ⁷ Yu. B. Kuz'ma and N. S. Bilonishko, Dopov. Akad. Nauk. Ukr. RSR., Ser. A, 3, 275 (1978).
- ⁸ D. T. Cromer and J. B. Mann, Acta Cryst A 24, 321 (1968).
- ⁹ D. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).
- ¹⁰ S. I. Mihalenko, Yu. B. Kuz'ma, and A. S. Sobolev, Poroschkov. Met. 169 (1), 48 (1977).
- ¹¹ J. S. Anderson, J. Chem. Soc. Dalton **1973**, 1107.
- ¹² H. Boller, Mh. Chem. **109**, 975 (1978).
- ¹³ A. Grüttner and K. Yvon, Acta Cryst. **B35**, 451 (1979).